Everyone plays guitar…

It has dawned on me that whilst I don’t pay a lot a month for hosting, I do actually pay something and so not keeping this blog up-to-date could be construed as a waste of money.

With that in mind I have an update – hooray.

I built my first guitar more than 10 years ago, whilst still at secondary school. I had only been playing for a few years, and I wanted something that would stand out both visually and aurally.

I started with a strat body, and a random neck I bought off eBay. I cut the scratch plate out of some clear acrylic, and mounted combination of a P-90, humbucker and single coil pickups. These were all wired together through a vast array of switches to enable me to switch any combination of pickups in both parallel or series, and either in or out of phase. Looking back it was a hideous rats nest of wiring, but that was nothing compared to the paint job.

I sat in the garage with my sister, who was 5 at the time, and we painted it with all the paints I could find. It was gloss, matte, and metallic, with a crackled finish in areas.

Since then I’ve bought 2 more guitars, and modified the wiring each time, but now I am more selective over the components. I try to select parts that match the current hardware, or add functionality without adding to the part count. All of this is leading to the real point of this post. I am designing a guitar pedal.

I have been meaning to design a pedal for a number of years, and I had no real reason to not do it. Every time I would sit down and work out what it needed, but I would always be put off by one aspect or another. There are hundreds of questions that stop me from progressing. What do I want the pedal to do? How do I control the modification to the sound? Is a 12bit ADC and DAC going to be enough? Do I have an analogue front end to mix the effect in, or deal with it in digital? Do I want a “true bypass” pedal, or is all the signal going into the processor at all times? Do I stick with what I know and use Microchip’s PIC32, go for a multi-core Parallax Propeller, or try my hand at one of Freescale’s DSP chips? Instead of letting the questions buzz around, I took the plunge and started the design of my pedal.

The signal is first passed through a capacitor, effectively removing the DC component. The signal is the biased at Vcc/2, and pass through an op-amp – TI’s LMV321. This will apply some gain to the signal, before feeding into the ADC – Microchip’s MCP3202; a 12bit ADC. It’s not the best ADC on the market, but it’s pretty cheap and will do the job for now. The digital data is then read in by Microchip’s PIC32MX764F128H. With a core frequency of 80MHz, this should be more than enough to perform some basic effects. Following manipulation, the data is then sent to the DAC – Microchip’s MCP4822; a 12bit DAC. Again, it’s not the best DAC around, but I am not aiming for that yet. Finally, I used a unity gain buffer to match any impedances, remove any DC component, and allow the next device in the chain to handle the signal. The parts selected were spares left over from previous projects. The only new purchases were the 6.35mm jacks and metal 1590A enclosure. It should be obvious that this is not going to be the best pedal in the world. I’m sure that any analogue aficionado will berate me for my choice of op-amp, and any audiophile will say that the minimum number of bits to consider would be 24. But they would be missing the point.

This pedal is my start line. It will allow me to see the weak points in the design. I should have mapped the control rotary encoders to an “Interrupt-On-Change” pin as the are a bit slow to respond, or sometimes appear to run in reverse. I should have use a codec IC with build-in 24bit ADC/DAC. I should have used analogue switches to bypass the circuit when disabled. By this time next week, I will have some answers.

After antagonising over this pedal for years, I have finally started. I spent around 2 days drawing a schematic and laying out a PCB. There’s some code still to be done, but a lot of it was written in the 2 weeks waiting for PCB’s to arrive. I’ve got PCBs from iTeadStudio for $27.59 (under £20), and all my components for around £25. For under £50, I have designed a programmable multi-fx guitar pedal. And I have no doubt that I’ll be doing the same next week.

One thought on “Everyone plays guitar…

  1. Pingback: Everyone plays guitar, but more people watch TV | Sleep is overrated…

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>